martes, 23 de noviembre de 2010

eliminador de vibracion........

graf_elimvib

barra_desc_png
Eliminadores de vibración construidos de acero corrugado inoxidable y cubierto por alambre trenzado de alta resitencia. Compatible con todos los refrigerantes CFC, HCFC y HFC; para aplicaciones de aire acondicionado, refrigeración y para aplicaciones de transporte refrigerado.


 barra_car_png
- Compatibles con todos los refrigerantes CFC, HCFC y HFC
- Unidades empacadas en cajas individuales
- Construidos de acero corrugado inoxidable, para incrementar la flexibilidad y la absorción de la vibración, cubierto por alambre trenzado de alta resistencia
- Reforzados con ferulas de cobre en ambos extremos
- Conectores de cobre hembra
- Todas las unidades se encuentran deshidratadas y selladas
- Aprobado y especificado por la mayoría de los fabricantes de compresores


barra_apli_png
Los eliminadores de vibración están diseñados para su instalación en las líneas de succión y descarga de los sistemas de aire acondicionados y refrigeración; utilizado también en aplicaciones de transporte refrigerado.

 

 
 
<>barra_desc_png



Eliminadores de vibración construidos de acero corrugado inoxidable y cubierto por alambre trenzado de alta resitencia. Compatible con todos los refrigerantes CFC, HCFC y HFC; para aplicaciones de aire acondicionado, refrigeración y para aplicaciones de transporte refrigerado.
barra_car_png 
 
- Compatibles con todos los refrigerantes CFC, HCFC y HFC
- Unidades empacadas en cajas individuales
- Construidos de acero corrugado inoxidable, para incrementar la flexibilidad y la absorción de la vibración, cubierto por alambre trenzado de alta resistencia
- Reforzados con ferulas de cobre en ambos extremos
- Conectores de cobre hembra
- Todas las unidades se encuentran deshidratadas y selladas
- Aprobado y especificado por la mayoría de los fabricantes de compresores

barra_apli_png
Los eliminadores de vibración están diseñados para su instalación en las líneas de succión y descarga de los sistemas de aire acondicionados y refrigeración; utilizado también en aplicaciones de transporte refrigerado.


 
 Eliminadores de Vibración


 

 

TEMPORALIZADOR O TIMER.

¿Que es un temporizador?

Un temporizador es un aparato mediante el cual, podemos regular la conexión ó desconexión de un circuito eléctrico pasado un tiempo determinado desde que se le dio dicha orden.
Un temporizador de refrigerador, también conocido como un temporizador de descongelar, es un dispositivo que sirve para regular la cantidad de las heladas en el refrigerador. Resulta periódicamente para permitir que las heladas en la nevera para derretir para que no se produce una acumulación de las heladas. Refrigeradores más modernos utilizan un temporizador de refrigerador para mantener sus niveles de las heladas relativamente estable.Si una nevera comienza a acumular las heladas, no enfriar adecuadamente, o es demasiado frío, que estos pueden ser signos de que el temporizador es defectuoso y debe sustituirse.
Este dispositivo puede ubicarse en un número de diferentes ubicaciones dentro de la nevera, incluyendo detrás del panel de control o la rejilla en el congelador. Es un reloj de crudo que cambia de ida y vuelta entre un modo de descongelar y un modo de refrigeración regular. Cuando el temporizador de refrigerador se convierte en modo de descongelar, se desactivan las funciones de enfriamiento de la nevera y el calentador de descongelar se activa para derretir las heladas que ha creado en el congelador.Cuando el temporizador se vuelve al modo de refrigeración, se permite la nevera para enfriar una vez más y se apaga el calentador de descongelar. La temperatura global interna del frigorífico se mantiene en un rango de seguro.
Históricamente, la gente tenía que descongelar sus refrigeradores a mano.Esto implicó vaciar el frigorífico, lo desenchufe y permitir que todo el hielo dentro de la masa fundida. Además de ser un proceso lento, esto también podría ser una cuestión de seguridad alimentaria, porque los alimentos pueden llegar a ser peligrosamente calientes mientras que tuvieron lugar fuera de la nevera. Por este motivo, muchas empresas comenzaron a desarrollar frigoríficos de las denominadas “heladas libre” que utilizan un temporizador de refrigerador para regular el proceso de deshielo.

El temporizador de refrigerador eventualmente puede fallar. Gente puede probar sus temporizadores con la asistencia de un veces. Poder de la nevera debería reducirse por lo que se puede quitar el dispositivo. A continuación, un sondeo sobre un veces puede aplicarse a la terminal común (a menudo marcados “C” o “3″) en el temporizador del refrigerador.La sonda de otra puede aplicarse a una de las tres terminales restantes en el temporizador del refrigerador, uno a la vez para obtener una lectura para cada terminal.Las lecturas para uno o dos de las terminales deben ser “cero”, mientras que los otros uno o dos deben decir “infinito”.Cuando el temporizador de refrigerador se ajusta manualmente a la configuración de otra, deberían invertirse estas lecturas.Si las lecturas no siguen este patrón, el dispositivo debe ser reemplazado.

jueves, 11 de noviembre de 2010

separador de aceite

 

 

UN SEPARADOR DE ACEITE ADECUADO PARA SEPARAR ACEITE DE UN REFRIGERANTE VAPORIZADO DEJANDO EL LADO DE DESCARGA DE ALTA PRESION DE UN COMPRESOR REFRIGERANTE , Y PARA DEVOLVER EL ACEITE SEPARADO AL CARTER DEL COMPRESOR. EL SEPARADOR DE ACEITE INCLUYE UNA CAJA ALARGADA CON UN EJE LONGITUDINAL. ETAPAS DE SEPARACION DE ACEITE Y UN TUBO CAPILAR ESTAN COLOCADOS DENTRO DE LA CAJA. EL TUBO CAPILAR TIENE UN PRIMER EXTREMO EN EL QUE EL ACEITE PUEDE FLUIR, Y UN SEGUNDO EXTREMO EN LA COMUNICACION DE LA CORRIENTE DE FLUIDO CON UNA SALIDA DE REGRESO DEL ACEITE EN LA CAJA. EL PRIMER EXTREMO DEL TUBO CAPILAR Y LA SALIDA DE REGRESO DEL ACEITE ESTAN COLOCADOS UNO EN RELACION CON EL OTRO DE TAL MANERA QUE EL EJE LONGITUDINAL DE LA CAJA PUEDE ORIENTARSE EN CUALQUIER ANGULO SELECCIONADO DENTRO DE UN ESPECTRO DE NOVENTA GRADOS ENTRE LAS ORIENTACIONES HORIZONTAL Y VERTICAL . EL TUBO CAPILAR TIENE UN ORIFICIO Y UNA LONGITUD SELECCIONADOS DE TAL FORMA QUE SE CREA UN INDICE DE CORRIENTE REFRIGERANTE PREDETERMINADA QUE LLEVA EL ACEITE HACIA EL CARTER .

 

miércoles, 3 de noviembre de 2010

Tipos de Motores Electricos

que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores.


Motores de corriente continua:
Los motores de corriente continua se clasifican según la forma como estén conectados, en:
Monofásicos
  • Motor de arranque a resistencia. Posee dos bobinas una de arranque y una bobina de trabajo.
  • Motor de arranque a condensador. Posee un capacitor electrolítico en serie con la bobina de arranque la cual proporciona más fuerza al momento de la marcha y se puede colocar otra en paralelo la cual mejora la reactancia del motor permitiendo que entregue toda la potencia.
  • Motor de marcha.
  • Motor de doble capacitor.
  • Motor de polos sombreados o polo sombra.
 Trifásicos
  • Motor de Inducción.
A tres fases
La mayoría de los motores trifásicos tienen una carga equilibrada, es decir, consumen lo mismo en las tres fases, ya estén conectados en estrella o en triángulo. Las tensiones en cada fase en este caso son iguales al resultado de dividir la tensión de línea por raíz de tres. Por ejemplo, si la tensión de línea es 380 V, entonces la tensión de cada fase es 220 V.

Rotor Devanado
El rotor devanado o bobinado, como su nombre lo indica, lleva unas bobinas que se conectan a unos anillos deslizantes colocados en el eje; por medio de unas escobillas se conecta el rotor a unas resistencias que se pueden variar hasta poner el rotor en corto circuito al igual que el eje de jaula de ardilla.
 Monofásicos
  • Motor universal
  • Motor de Inducción-Repulsión.
 Trifásico
  • Motor de rotor devanado.
  • Motor asíncrono
  • Motor síncrono

 Síncrono

En este tipo de motores y en condiciones normales, el rotor gira a las mismas revoluciones que lo hace el campo magnético del estator.
  • Motor serie
  • Motor compound
  • Motor shunt
  • Motor eléctrico sin escobillas
Además de los anteriores, existen otros tipos que son utilizados en electrónica:
  • Motor paso a paso
  • Servomotor
  • Motor sin núcleomotor con nucleo

Motores de corriente alterna:
Jaula de ardilla
Un rotor de jaula de ardilla es la parte que rota usada comúnmente en un motor de inducción de corriente alterna. Un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas).

tipos de valvulas

 Categorías de válvulas.
Debido a las diferentes variables, no puede haber una válvula universal; por tanto, para satisfacer los cambiantes requisitos de la industria se han creado innumerables diseños y variantes con el paso de los años, conforme se han desarrollado nuevos materiales. Todos los tipos de válvulas recaen en nueve categorías: válvulas de compuerta, válvulas de globo, válvulas de bola, válvulas de mariposa, válvulas de apriete, válvulas de diafragma, válvulas de macho, válvulas de retención y válvulas de desahogo (alivio).
Válvulas de compuerta.
La válvula de compuerta es de vueltas múltiples, en la cual se cierra el orificio con un disco vertical de cara plana que se desliza en ángulos rectos sobre el asiento 

Válvulas de macho
La válvula de macho es de ¼ de vuelta, que controla la circulación por medio de un macho cilíndrico o cónico que tiene un agujero en el centro, que se puede mover de la posición abierta a la cerrada mediante un giro de 90°.





Válvulas de globo

Una válvula de globo es de vueltas múltiples, en la cual el cierre se logra por medio de un disco o tapón que sierra o corta el paso del fluido en un asiento que suele estar paralelo con la circulación en la tubería.

Válvulas de bola
Las válvulas de bola son de ¼ de vuelta, en las cuales una bola taladrada gira entre asientos elásticos, lo cual permite la circulación directa en la posición abierta y corta el paso cuando se gira la bola 90° y cierra el conducto.


Válvulas de mariposa
La válvula de mariposa es de ¼ de vuelta y controla la circulación por medio de un disco circular, con el eje de su orificio en ángulos rectos con el sentido de la circulación.


Válvulas de diafragma
Las válvulas de diafragma son de vueltas múltiples y efectúan el cierre por medio de un diafragma flexible sujeto a un compresor. Cuando el vástago de la válvula hace descender el compresor, el diafragma produce sellamiento y corta la circulación.


Válvulas de apriete
La válvula de apriete es de vueltas múltiples y efectúa el cierre por medio de uno o más elementos flexibles, como diafragmas o tubos de caucho que se pueden apretar u oprimir entre sí para cortar la circulación.



Válvulas de retención de elevación
Una válvula de retención de elevación es similar a la válvula de globo, excepto que el disco se eleva con la presión normal e la tubería y se cierra por gravedad y la circulación inversa.





Válvulas de desahogo (alivio)

Una válvula de desahogo es de acción automática para tener regulación automática de la presión. El uso principal de esta válvula es para servicio no comprimible y se abre con lentitud conforme aumenta la presión, para regularla.

La válvula de seguridad es similar a la válvula de desahogo y se abre con rapidez con un "salto" para descargar la presión excesiva ocasionada por gases o líquidos comprimibles.

El tamaño de las válvulas de desahogo es muy importante y se determina mediante formulas especificas.

Filtros Deshidratadores

 

Humedad en los Sistemas de Refrigeración

Es bien conocido el peligro que representa un exceso de humedad en los sistemas de refrigeración; ya que la humedad combinada con altas temperaturas, da origen a fenómenos complejos, sobresaliendo la formación de hielo en la válvula de termo expansión o en el tubo capilar, ácidos en refrigerante y aceite, lodo y hasta quemadura del motocompresor. Aun cuando el contenido de humedad no sea excesivo como para congelarse en la válvula de termo expansión o en el tubo capilar, de todos modos puede causar algunos de los otros problemas previamente mencionados y, puesto que todos estos efectos no pueden ser detectados de manera ordinaria, es importante el uso de filtros deshidratadores para mantener la humedad en un nivel seguro.


Tipos

Existen muchos materiales que tienen la capacidad de servir como agentes desecantes o deshidratantes, pero no todos son adecuados para utilizarse en refrigeración, ya que en estos sistemas, se requiere un material que remueva la humedad de la mezcla refrigerante-aceite, sin causar reacciones indeseables con estos compuestos o con otros materiales del sistema.

De entre los diferentes desecantes que remueven la humedad por el proceso de adsorción, los más comúnmente empleados en refrigeración son: sílica gel, alúmina activada y tamiz molecular.

Alúmina Activada.- Un sólido duro de color blanco, comúnmente en forma granular que no es soluble en agua. Además de su capacidad para retener agua, también tiene una excelente capacidad para retener ácidos. Generalmente no se utiliza en forma granular, sino que se tritura y se moldea en forma de bloque poroso, combinada con otro desecante para incrementar su capacidad de agua. Así, además de una gran capacidad para retener agua y ácidos, se proporciona filtración.


Sílica Gel.- Un sólido con aspecto de vidrio que puede tener forma granular o de perlas. No se disuelve en agua y tiene poco desprendimiento de polvo cuando se utiliza suelta. Tiene una capacidad aceptable para retener humedad. También se puede usar mezclada con otros desecantes para incrementar su capacidad de retención de agua, en forma granular (suelta) o moldeada en forma de bloque poroso.

Tamiz Molecular.- Es el más nuevo de los tres desecantes y ha tenido muy buena aceptación en la industria. Es un sólido blanco que no es soluble en agua. Su presentación común es en forma granular o esférica. Tiene una excelente capacidad de retención de agua, aunque menor que la de la alúmina activada para retener ácidos. Debido a lo anterior, es muy común combinar estos dos desecantes para balancear estas dos características: retener agua y ácidos. Esta mezcla generalmente es en forma de bloques porosos moldeados.

Tuberías de cobre

 

Cuando se construye una casa o departamento el arquitecto o maestro mayor de obras nos harán una simple pregunta “¿Cómo querrá sus tuberías?”, y aquí la respuesta puede variar según cada persona. Por lo general, las instalaciones modernas se hacen con tuberías de cobre, debido a que es un material ligero, que suelda con facilidad y es de fácil manipulación. Además, dentro de sus aplicaciones, es útil para transporta tanto agua fría como caliente; podemos encontrar 2 tipos de tuberías de cobre. Los tubos de cobre recocidos o blandos, que se venden en las ferreterías en rollos de 50 metros y se caracteriza por ser una material moldeable. Y los tubos de cobre rígidos los cuales encontramos en forma de barras rectas de 5 metros, y como su nombre lo indica, son rígidos.

 Las tuberias de PVC ofrecen accesorios que optimizan el proceso de doblado y union de los caños ---------------------------------------------------------------------->

 

 

 

 

 

Cortar y doblar tuberías de cobre

Estas tuberías pueden doblarse y curvarse, y si lo hacemos correctamente podemos hasta evitar la instalación de codos; de todas maneras este trabajo debe realizarse con herramientas específicas para poder hacerlo con precisión. Necesitaremos fundamentalmente una trenza curvadora o un muelle de doblar; introduciremos la tubería de cobre en el interior del muelle y ejerciendo una simple presión sobre él, el tubo se cortará de forma sencilla sin aplastarse o deformarse. El cobre es un metal bastante blando y eso hace que sea fácil de cortar y moldear; para realizar un corte puede utilizarse una sierra para metales, o un cortatubos (este es mejor ya que evita una posible deformación en la tubería y hace que el corte sea más limpio). Se debe hacer un movimiento alrededor del tubo hasta cortarlo de forma completa, una vez que se hayan cortado, se deben limar para evitar las rebadas y a su vez las posibles pérdidas de presión.

tuberia.......

Tuberias

El grosor común de las tuberías de cobre son el “tipo K”, el “tipo L” y el “tipo M”; El tipo “M” es relativamente barato y de paredes relativamente delgadas y generalmente conveniente para el condensado y otro drenaje, pero generalmente ilegal para los usos de la presión, el tipo “L” tiene una sección de pared más gruesa, y se utiliza para el abastecimiento y la presión de agua en residenciales y edificios comerciales, el tipo “K” tiene la sección de pared más gruesa de los tres tipos de tubería de presión clasificadas y es de uso general para las tuberías subterráneas de profundidad tal como aceras y calles inferiores, con una capa conveniente de protección anti-corrosivo o una manga continua del polietileno según los requisitos de código. En el mercado de la plomería el tamaño de la tubería de cobre es medido por su diámetro nominal (diámetro interior medio). Algunos negocios, técnicos en calefacción y refrigeración por ejemplo, utilizan el diámetro exterior (OD, siglas en inglés) para señalar tamaños del tubo de cobre. El OD del tubo de cobre es siempre 1/8 pulgada más grande que su tamaño nominal. Por lo tanto, 1 " tubo de cobre nominal y 1-1/8" de pulgada tubo ACR es exactamente el mismo tubo con diversas designaciones de tamaño. El grueso de pared del tubo, según lo mencionado arriba, nunca afecta el apresto del tubo. El tipo K el 1/2" tubo nominal, es del mismo tamaño que el tipo L el 1/2" tubo nominal (5/8 " ACR). Generalmente, los tubos de cobre se sueldan directamente en los accesorios de cobre o de latón, aunque la compresión, la encrespadura, o los accesorios de la flama también se utilizan. Antes, existían preocupaciones relacionadas con los tubos de cobre incluido el plomo usado (50% lata y 50% plomo) en la soldadura en los empalmes.



TiPoS dE iLuMiNaCiOn...............

Iluminacion

Iluminación:
La iluminación es la acción o efecto de iluminar. En la técnica se refiere al conjunto de dispositivos que se instalan para producir ciertos efectos luminosos, tanto prácticos como decorativos. Con la iluminación se pretende, en primer lugar, conseguir un nivel de iluminación, o iluminancia, adecuado al uso que se quiere dar al espacio iluminado, nivel que dependerá de la tarea que los usuarios hayan de realizar.

Iluminación eléctrica:
Iluminación mediante cualquiera de los numerosos dispositivos que convierten la energía eléctrica en luz. Los tipos de dispositivos de iluminación eléctrica utilizados con mayor frecuencia son las lámparas incandescentes, las lámparas fluorescentes y los distintos modelos de lámparas de arco y de vapor por descarga eléctrica.

Tipos de iluminación:



Tipos de lámparas

Las lámparas de descarga eléctrica dependen de la ionización y de la descarga eléctrica resultante en vapores o gases a bajas presiones en caso de ser atravesados por una corriente eléctrica. Los ejemplos más representativos de este tipo de dispositivos son:
·     Las lámparas de arco rellenas con vapor de mercurio, que generan una intensa luz azul verdosa y que se utilizan para fotografía e iluminación de carreteras.
·     Las lámparas de neón, utilizadas para carteles decorativos y escaparates.
En las más modernas lámparas de descarga eléctrica se añaden otros metales al mercurio y al fósforo de los tubos o ampollas para mejorar el color y la eficacia. Los tubos de cerámica translúcidos, similares al vidrio, han permitido fabricar lámparas de vapor de sodio de alta presión con una potencia luminosa sin precedentes.

La lámpara fluorescente es otro tipo de dispositivo de descarga eléctrica empleado para aplicaciones generales de iluminación. Se trata de una lámpara de vapor de mercurio de baja presión contenida en un tubo de vidrio, revestido en su interior con un material fluorescente conocido como fósforo.
La radiación en el arco de la lámpara de vapor hace que el fósforo se torne fluorescente. La mayor parte de la radiación del arco es luz ultravioleta invisible, pero esta radiación se convierte en luz visible al activar al fósforo. Las lámparas fluorescentes se destacan por una serie de importantes ventajas. Si se elige el tipo de fósforo adecuado, la calidad de luz que generan estos dispositivos puede llegar a semejarse a la luz solar. Además, tienen una alta eficacia. Un tubo fluorescente que consume 40 vatios de energía genera tanta luz como una bombilla incandescente de 150 vatios. Debido a su potencia luminosa, las lámparas fluorescentes producen menos calor que las incandescentes para generar una luminosidad semejante
Un avance en el campo de la iluminación eléctrica es el uso de la luminiscencia, conocida como iluminación de paneles. En este caso, las partículas de fósforo se hallan suspendidas en una fina capa de material aislante, como por ejemplo el plástico. Esta capa se intercala entre dos placas conductoras, una de las cuales es una sustancia translúcida, revestida en su interior con una fina película de óxido de estaño. Como los dos conductores actúan como electrodos, al ser atravesado el fósforo por una corriente alterna hace que se ilumine. Sin embargo, el uso de la iluminación de paneles está limitado por el hecho de que las necesidades de corriente para grandes instalaciones son excesivas.
Se han desarrollado una serie de diferentes tipos de lámparas eléctricas para fines especiales, como la fotografía y el alumbrado de alta intensidad. Por lo general, estas lámparas han sido diseñadas de manera que puedan actuar como reflectores al ser revestidas de una capa de aluminio especular.

A continuación muestro 2 de las aplicaciones de la iluminación:

Aplicación
Necesidades
Utilizar Producto
Philips
Características
Beneficios
Comercial
Hacer los productos más atractivos.
Reducir costos de energía.
White Son (Sodio de alta presión).
MHK-TD (Aditivos metálicos).
Elevado flujo luminoso.
Alto rendimiento de color.
Ahorradoras de energía
Hace lucir a la mercancía más atractiva y más natural.
Bajos costos de energía.
Industrial
Aéreas grandes uniformemente iluminadas con luz brillante.
Reducción de costos de energía y de mantenimiento.
Ceramalux Confort.
(Lámpara HPS)
Aditivos metálicos.
Alto rendimiento de color.
Mayor vida útil.
Ahorradoras de energía
Mejora de seguridad y la productividad.
Bajos costos de energía y de mantenimiento.